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Abstract

LIFE is a constraint-logic programming language over order-sorted graphs subject to functional
dependency constraints. We use it to present a simple and purely declarative speci�cation of the
popular number puzzleSu Doku. This speci�cation yields a surprisingly ef�cientSu Dokusolver
although the “all-different” constraint is not native toLIFE . The trick is that this constraint can
be realized ef�ciently though purely declaratively usingLIFE 's native data structure and adaptive
control strategy. For added bonus and ease of interaction with the puzzle solver, we also useLIFE
to specify a purely declarative GUI display.

Keywords: Constraint-logic programming,LIFE , Su Doku, “all-different” constraint, puzzle
solving, declarative programming, declarative graphics

1 Introduction
Life is “trying things to see if they work. . . ”

RAY BRADBURY

The popular gameSu Dokuhas been solved using a variety of techniques, in a plethora of program-
ming idioms.1 These range from (declaratively) obscure solutions—e.g., in APL2—to (declaratively)
elegant ones such as those using constraint-logic programming (CLP)—e.g., in CHIP.3 The CLP solu-
tion's declarativeness relies essentially on describing the problem in terms of the global `alldiff '
constraint, which stipulates that a given set ofn variables must always be assigned mutually distinct
values [13, 15, 16].LIFE is a constraint-logic programming language over order-sorted graphs sub-
ject to functional dependency constraints [3]. Our essential contribution in this paper is to show how
LIFE enables a surprisingly ef�cient `alldiff ' purely declaratively thanks to its:

1. built-in constrained data-structure (extensible records [3]), and

2. control strategy (constraintresiduation[7]).

� A short version of this paper was published as [4].
1See:http://en.wikipedia.org/wiki/Sudoku
2See:http://www.vector.org.uk/archive/v214/sudoku2.htm
3See:http://uuu.enseirb.fr/˜gloess/sudoku/CHIP/sudoku.pl
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Residuation is the evaluation strategy whereby functionalexpressions are evaluated as far as possible,
suspending upon unbound variables. A suspended evaluationis then awakened and resumed as soon
as any variable it is waiting for gets further instantiated.

This paper's essential contribution is that of a Programming Pearl inLIFE . It is in no way claimed
that realizing theàlldiff ' in the manner herein described is more ef�cient than the best known
methods described in [13, 15, 16]—nor indeed that it comes even close. The point is simply to explain
how LIFE 's native features enable a more than decent `alldiff ' for free!—i.e., without having
to make the investment of implementing such a speci�c solver. By “more than decent”, we mean
suf�cient to solve a few reputedly hardSu Dokugames.4 Of course, for other applications involving
more tricky con�gurations over many more variables than aSu Dokuproblem (such as,e.g., large
scale jobshop scheduling), this freebie `alldiff ' is quite likely to run out of breath where native
methods will hold sway. Still, for fast prototyping withoutaccess to a native `alldiff ' solver, we
found it instructive to realize thatLIFE 's idiosyncratic features could easily give it this particular
capability.

In essence, under the guise of a ludic musing, we will demonstrate some subtle capabilities of
LIFE and its adequacy for ef�cient declarative programming. We hope to illustrate how some of
the innovating symbolic computation techniques that are behind LIFE ( -term uni�cation, order-
sorted feature constraint solving, Horn resolution, functional rewrite rules, residuation,etc.) can also
naturally be combined with simple control to provide an adequate basis for ef�cient—nay, clever!—
declarative programming. Indeed, our speci�cLIFE Su Dokusolver is only meant as an exemplar,
albeit entertaining, of such a serendipitous combination of features.

The remainder of this paper is organized as follows. In Section 2, background onLIFE is suc-
cinctly overviewed. In Section 3, what makes thepassiveconstraint system ofLIFE stand apart
from active solvers is discussed. In Section 4, we summarize the essenceof our contribution. In
Section 5, we explain how the `alldiff ' constraint may be realized purely declaratively inLIFE
for free, and—to boot!—ef�ciently so. As a bonus showing thepower ofLIFE 's passive constraint
system for declarative programming, Section 6 explains howa purely declarative, though effective,
graphical user interface (GUI) can be speci�ed for interacting with theSu Dokusolver. We conclude
in Section 7 with a few remarks. The completeLIFE Su Dokuprogram may be downloaded from the
author's web site.5 The programs therein run as claimed using theWildLife 1.02 interpreter [5].

2 A quick look back on LIFE
Life can only be understood looking backwards but it must be
lived forwards.

SØREN K IERKEGAARD

LIFE [3] is a CLP language that may be loosely de�ned as Prolog over -terms, which are order-
sorted graphs, themselves possibly subject to functional and relational contraints. As Prolog uses
�rst-order terms as its universal data structure, so doesLIFE use -terms. A -term generalizes a
�rst-order term (FOT) by allowing cycles (�a la rational terms) and partial information (in the form of
partially-ordered sorts). The sorts denote sets and the partial order on sorts denotes set containment.

Following is a summary of relevant features ofLIFE .

1. Like a FOT, a -term may have arguments; these are speci�ed implicitly as for a FOT us-
ing a parenthesized comma-separated sequence of -terms, and/or they may be speci�ed by

4See Appendix Section B.
5See:http://wikix.ilog.fr/wiki/bin/view/Main/HassanAitKa ci#3
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keywords (calledfeatures), including explicit out-of-order numerical positions. Examples of
 -terms are:6

� f(a,X,g(X)) —or, equivalently,f(1=>a, 2=>X, 3=>g(1=>X)) ,
� person(name => "bozo", dob => date(year => 1980)) ,
� add(X,Y,result => X+Y) ,
� X:person(spouse => person(spouse => X)) .

2. Unlike FOTS, -terms do not impose a �xed arity: the number of possible arguments is not
constrained, and can be zero or any, by implicit or explicit position, by keywords, or both,
and in any order. For example, unifying the -termsf(a,3=>c) andf(a,b) succeeds and
results inf(a,b,c) . Similarly, unifying the -term:

person(P, dob => date(month => may))

with the -term:

person(dob => date(year => 1980)) ;

succeeds and results in the -term:

person(P, dob => date(month => may, year => 1980)) :

3. LIFE predicates are de�ned by Horn rules over -terms. InLIFE , everything is a -term,
in the same way as everything is a FOT in Prolog. This providesa powerful convenience for
metaprogramming.

4. Like Prolog,LIFE resolves a relational query using a top-down/left-right backtracking control
strategy. The cut operator (! ) may be used as in Prolog.

5. Invoking a predicate binds variables or re�nes sorts using  -termuni�cation (OSF constraint
conjunction).7 In LIFE , there is no conceptual difference between types and values. These
are calledsortsand are partialy ordered in a sort hierarchy. The topmost all-encompassing sort
is written @̀' and the bottommost all-excluding sort is `fg '—which causes failure inLIFE .
All LIFE 's logical variables are sorted. A variableX bearing no sort is implicitly under-
stood as being sorted by@—i.e., `X:@'. The subsort ordering is declared using declarations
such as àpple <| fruit .' and `apple <| food .', which make àpple ' objects be
also f̀ruit ' and f̀ood ' objects. With such declarations, a query such as `X = food, X
= fruit? ' would succeed with the bindingX̀ = apple '— i.e., the intersection of sorts
`food ' and f̀ruit '. If in addition we had declared as wellbanana <| fruit .' and
`banana <| food .', then the above query would �rst giveX̀ = apple ', then upon back-
tracking X̀ = banana '. The semicolon disjunction operation (`;/2 ') can also be used on
sorts enclosed in curly braces (denoting their union)—e.g., `X = f breakfast ; lunch
; dinner g'.

6. LIFE interprets functions that are de�ned by ordered rewrite rules transforming a -term into
another. The rules making up a function de�nition are tried in the given order, the next being
tried only if the preceding's matching failed.

6We use Prolog's convention of capitalizing logical variables.
7OSF stands for“Order-Sorted Feature.”Thus, anOSF term is a rooted graph whose nodes are labelled with (partially-

ordered) sort symbols, and whose arrows are labelled withfeaturesymbols. A -term is anOSF term in normal (or canoni-
cal) form—see [6].
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7. Evaluating a functional expression binds variables and veri�es sort constraints using -term
matching(OSF constraint entailment). Upon a fully successful matching of a LHS, no further
rules for this expression will be tried.8

8. Predicateresolutionand functionevaluationcooperate usingresiduation. For example, pro-
cessing the resolvent `X = Y+1, Y = 2? ' from left to right, the functional expression
`Y+1' is a suspended functional expression because it needs to wait for the variableY to take
on a value. Thus, the equation `X = Y+1' is a residual constraint (or residuation). Thanks to
commutativity of conjunction,LIFE proceeds to the right to the next atom to resolve (i.e., `Y
= 2' ), bindingY to 2. This automatically awakens the residuation `X = Y+1' whereupon the
functional expressionỲ+1' evaluates to3, bindingX to this value. Should this instantiation
violate any accumulated constraint, chronological backtracking to the last choice point would
occur.9

9. A  -term's subterm may be extracted usingfeature projection, which is a dyadic function
(written using the functor `./2 '). This function takes two arguments: its �rst argument may
evaluate to any -term. Its second argument must evaluate to a feature symbol—i.e., a natural
number or a symbolic identi�er. It returns the sub- -term of the �rst argument located under
the given position (or symbolic feature) speci�ed as the second argument. In other words, the
subtermT 0of a  -termT at featuref is expressed asT.f = T' if and only if T = s(...,
f => T', ...) , for some sorts. Being a function, feature projection residuates whenever
its second argument is not ground—i.e., whenever it is not bound to a natural number or a
symbolic identi�er.

10. New subterms may be added to a -term by uni�cation or feature projection. Indeed, when
invoked on a -termT as �rst argument and with a featuref as second argument, the `./2 '
function has as side-effect: its creates the featuref for T if T does not have the speci�ed
feature. For example, the resolvent `X = foo(bar => buz), X.boo = fuz? ' will
result in the augmented -term X̀ = foo(bar => buz, boo => fuz) .'

3 How isLIFE (all that) different ?
Life is the sum of all your choices.

ALBERT CAMUS

At �rst, LIFE feels very much like Prolog to a programmer. Lists are represented in the same man-
ner as they are in Prolog—viz.., square-bracketed and comma-separated. Horn clauses arede�ned
using the in�x binary operator `:-/2 ', conjunction is the in�x binary operator `,/2 ', disjunction
is the in�x binary operator ;̀/2 '. For example, one can de�ne the familiar `append/3 ' predicate
verbatimas one would in Prolog. Namely:

append([],L,L).
append([H|T],L,[H|R]) :- append(T,L,R).

Such a predicate can then be used exactly as in Prolog.
On the other hand,LIFE also differs from Prolog both in obvious and subtle ways. Oneessential

difference is that arity is not constrained forLIFE 's  -terms, whereas it is �xed per symbol in
Prolog's FOTs. So what happens when one uni�es two -terms of different arities? Simply: if a

8This, in essence, is akin to asystematic cut upon the �rst successful LHS match. In other words, functional computation
is always deterministic and never backtracks.

9Only predicate resolution may backtrack, whereas functional evaluation commits to the �rst successful match.
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feature is present in both, then the corresponding subtermsare uni�ed; if a feature is present in one
and missing in the other, it is simply kept with its subterm inthe -term resulting from the uni�cation.
For example:

A = foo(a => 1, b => 2), B = foo(b => X, c => 3), A = B ?

succeeds, resulting in the solved form:

A = foo(a => 1, b => X, c => 3), B = A, X = 2.

It can be thus said that -term features are“sticky!” It is important to note thatLIFE restores
all uni�cation side-effects upon bactracking. Therefore,features and subterms that materialize by
 -term uni�cation or feature projection will dematerializeupon backtracking to an earlier state.

Another difference is the use of interpreted functions.LIFE functions are de�ned as rewrite rules
using the in�x binary operator `->/2 '. For example, one can de�ne a function returning the length
of a list as follows:

length([]) -> 0.
length([_|T]) -> 1 + length(T).

and use it to de�ne a relation; say:

has_even_length(L:list) :- length(L) mod 2 = 0.

Then, proving the resolvent `has_even_length([a,b])? ' succeeds as expected. On the other
hand, the resolvent `has_even_length([a,L:list])? ' will cause the evaluation of the equa-
tion (̀1 + length(L:list)) mod 2 = 0? ' to residuate. This is because the sort ofL is
list , a supersort of[] and[_,_] , and thus it cannot be decided which rule may apply.10 LIFE
deems this a conditional success, pending further instantiation of the residuation variableL, whose
sort is then printed followed by as many tildas (`˜ ') as there are residuations waiting for the variable
to become instantiated in order to proceed, together with its current binding—e.g., `L = list˜ ' in
our example.

Finally, note that metaprogramming can be used to reason about features, using feature projection.
For instance, if À = foo(a => 1, b => 2, c => 2) ' then the query X̀ = f a ; b ;
c g, A.X = 2? ' will succeed �rst with the solution X̀ = b'; then, upon backtracking, with the
second solutionX̀ = c'.

4 Purely declarativeSu Doku
The art of life is the art of avoiding pain.

THOMAS JEFFERSON

We now present our purely declarative and surprisingly ef�cient Su Dokusolver. The solver it-
self is very easy—nay, trivial!—to express inLIFE as it should be in any CLP idiom: we simply
write down literally the rules of the game and that's it! The complete code is given in Appendix
Section A.1.

Of course, this declarative magic is made possible by the `alldiff ' constraint, which stipu-
lates that a set of objects must be globally and mutually distinct from one another. Of course, for
effective solving of a realSu Doku game, this magic is only satisfactory if the `alldiff ' con-
straint can be ef�ciently enforced. This is the case of most C(L)P systems such as ILOG Solver [12],

10Recall that, inLIFE , function application uses -termmatching, notuni�cation.
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CLP(BNR ) [10], CLP(R) [8], etc., which haveàlldiff ' implemented as abuilt-in constraint[13,
16]. By contrast, although we do abide by the exact same straighforward and purely declarative CLP
formulation usingLIFE , we do not however rely on a built-in `alldiff ' constraint. Indeed, there
is no such a primitive in theWildLife 1.02 system.

On the other hand,LIFE 's reasoning primitives can elegantly express `alldiff ' purely declar-
atively, and yet achieve the high performance of a built-in `alldiff ' constraint! How? Simply by
combining two of its powerful principles:

1. dynamic objects, which can freely acquire new features as needed through -term uni�cation
and feature projection; [3] and,

2. automatic coroutiningof functional expressions—i.e., suspension/resumption of functional
evaluation pending on further instantiation of arguments (here, speci�cally, residuation of ob-
ject feature projection) [7].

As a cherry on the cake, the actualLIFE code for àlldiff ' is amazingly succint—one line of
code! Last, but not least, it is surprisinglyef�cient. This is remarkable since this enables solving
dif�cult puzzles using theWildLife 1.02 interpreterrunning on a laptop undercygwin/X .11

This is not so bad taking into account the disconcerting easeof the programming effort.

5 It's all different using graphs!
If A equals success, then the formula is: A = X + Y + Z, where X is work,
Y is play, and Z is keep your mouth shut.

ALBERT EINSTEIN

We now explain how the well-known global constraint `alldiff ' is ef�ciently enabled for free
in LIFE thanks to its native combination of extensible cyclic graphuni�cation (i.e.,  -term uni�-
cation) and its automatically adaptable control behavior usingresiduation(i.e., suspended functional
evaluation, pending further instantiation) [7].

Recall that àlldiff ' imposes that a �nite set of variables taking values in some �nite domains
be each assigned to a distinct value. Ana�̈ve O(n2) method consists in generatingn(n � 1)=2
disequalities among the variables. This is clearly expensive in space and time. Whereas, a much
more ef�cient technique consists in ensuring that any assignment mapping the complete set of so-
constrained variables to values is always a one-to-one mapping (i.e., injective)—in effect realizing
a maximal matching in a bipartite graph [13, 16, 14]. The goodnews is that enforcing this global
constraint is achievable inconstant time and linear space!12

This method can easily be made effective inLIFE by using residuation of the feature projection
function ( .̀/2 ') on a shared variable denoting a matching assignment for the variables. Namely, we
can constrain each variable/value pair being assigned to be(globally) in mutual functional correspon-
dence (i.e., through a one-to-one mapping) by projecting the shared assignment-denoting variable
using the unbound constrained variable as one of its features taking a unique id as value (anint ,
say). As long as it is unbound, the “feature” variable will cause the projection function to residuate.
In this manner,as soon as the variable gets bound to a value, the residuation�res, thus enforcing
uniqueness of its assigned value thanks to that of the “feature” for the shared assignment variable.

11See:http://x.cygwin.com/
12To be more precise, the time complexity is dominated by that of access into a -term's feature table, which associates

the term's root to its subterms. If access is hashed (as it is in theWildLife 1.02 interpreter), these table accesses are of
orderO(log n). Although for what concerns the subterms speci�ed by numerical positions, the order of time complexity
access isO(1) ; i.e., constant. However, it is possible, by compilation, to eliminate all symbolic features to transform them
into numerical positions [1].
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Let us �rst illustrate the gist of this technique inLIFE by de�ning a predicatèalldiff/3'
that imposes that its three argument variablesX1, X2, andX3 be each assigned mutually different
values in their domains. We will generalize it later to any number of variables, not just three.

Thus, here is anàlldiff ' constraint on three variablesX1, X2, and X3 using a predicate
`assign/3' imposing the all-different assignment scheme using a shared logical variable denoting
the global assignment (viz., the variableA):

alldiff(X1,X2,X3) :-
assign(A,X1,1), assign(A,X2,2), assign(A,X3,3).

In fact, we have used a predicate`assign/3' just to make notation more conspicuous since it is
trivially de�ned by residuation of feature projection as follows:

assign(A,X,I) :- A.X = I.

VariableA denotes the global assignment, variableX the constrained variable, and variableI the
assignment's unique id.

A simple example of using this limitedall-diff constraint would be, for instance:

show(X1,X2,X3) :-
alldiff(X1,X2,X3),
X1 = { a ; b }, % domain of X1
X2 = { b ; c }, % domain of X2
X3 = { a ; d }. % domain of X3

Thus, invoking the querys̀how(X1,X2,X3)? ' will give successively:

X1 = a, X2 = b, X3 = d.
X1 = a, X2 = c, X3 = d.
X1 = b, X2 = c, X3 = a.
X1 = b, X2 = c, X3 = d.

Now, let's see how this works. Fig. 1 shows the effects of executing each of the four lines making
the body of the predicate `show/3 ' de�ned above. Each step results in a modi�cation of the structure
of the  -term rooted in variableA. The dashed arrow represents the residuated feature projections
waiting for the feature variablesX1, X2, andX3, to be instantiated. A solid arrow is obtained when
the corresponding feature is actually materialized: the instantiated feature is then added as abona
�de feature to the structure rooted inA. BindingX3 to a results in a clash due to the feature variable
X3 taking on the same value asX1. This is because functionality of features imposes then that the
same individual be found under featurea. Instead, it is found that the existing values—viz.., 3 and
1—are incompatible. This causes backtracking to the last choice point, giving as next choiceX3
= d, which violates no constraint, and therefore succeeds witha legal all-different assigment to the
three variables.

To obtain a predicate that would work not just on three variables, but on a set of any number of
variables, we now simply generalize the above scheme, making it generic among an arbitrary number
of variables instead of just three. We de�ne the predicate `alldiff/ * ', that takes any number of
arguments and imposes that they all be different, as follows:

C:alldiff :- assignment(features(C),C,A,1).

This rule uses the metaprogramming convenience made possible by seeing everything as a -term
in LIFE . First, the head of thealldiff rule is tagged by variableC: it designates the -term
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alldiff(X1,X2,X2)

A : @

X1 : @ X2: @ X3: @

1 2 3

X1 = a

A : @

X1 : a X2 : @ X3: @

1 2 3

X2 = b

A : @

X1 : a X2 : b X3 : @

1 2 3

X3 = a

A : @

X1 : a X2 : b X3 : a

=

1 2 3

6=

Figure 1: Howalldiff works

that gets bound to the call; that is, the one that invokesalldiff . The one-argument (meta)function
`features/1 ' returns the list of feature symbols currently attached as arguments to a given -term.
In other words, the body of the ruleLIFE de�ning thealldiff predicate simply initiates a call to
the predicateàssignment/4 ', which takes as arguments:

1. the list of features of the call toalldiff ,

2. the -term representing the call toalldiff itself needed to extract the actual subterms from,

3. the shared assignment variable, and

4. the rank in the speci�ed list of features of the feature being currently extracted from the call.

Namely:13

assignment([]).
assignment([H|T],C,A,I) :-

assign(A,C.H,I), assignment(T,C,A,I+1).

And that's it! Literally.
TheSu Dokusolver itself is de�ned as the predicate `sudoku_solver/1 ', which simply con-

strains aSu Dokugrid Gand speci�es the numeric labels for the cells ofG:

sudoku_solver(G) :- sudoku(G), labels(G).

wheresudoku/1 tests the all-different constraints on a9 � 9 Su Dokugrid, andlabels/1 gen-
erates labels between1 and9 for each cell inG.14 Note that this strategy is simply infeasible in a

13Recall that the expressionassign(A,C.H,I) is equivalent toA.(C.H) = I .
14See the code for `sudoku/1 ' and l̀abels/1 ' in Appendix Section A.1.
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logic-programming language like Prolog because its operational semantics demands that a state be
generatedbefore it is tested whether or not it violates any constraint. However, using the reverse
strategy (viz., �rst setting up all the constraints tests as residuations,and then generating the states)
makes all the difference! Indeed, in this way, ef�cient adaptive pruning of the search space takes place
automatically sincemost states need not be generated at alldue to immediate backtracking caused to
any constraint violation as soon as one occurs. Therefore, the above line containsthe innocuous key
to LIFE 's unique way for ef�cient constraint-handling. Indeed, thanks to residuation,LIFE allows
any factors of a conjunction to commute. By contrast, the following predicate de�nition:

bad sudoku solver (G) :- labels(G), sudoku(G).

(obtained by simply reversing the order of the body goals) has identical model-theoretic semantics as
the previous one's, but results in appallingly inef�cient proof-theoretic performance. It is, however,
perfectly correct from a model-theoretic point of view! Many model theorists miss this point.

6 LIFE bonus: a declarativeSu Doku GUI
Life is just a mirror, and what you see out there, you must �rst
see inside of you.

WALLY `FAMOUS' A MOS

LIFE , as a generic language, has a working instance calledWildLife [5].15 This system im-
plements a constraint system based on:

� extensible records known asfeature structuresmaking up (possibly cyclic) labeled graphs; the
arcs are the record �eld bearing labels calledfeatures; the nodes are the record constructor
symbols calledsorts;

� equality constraints among functional expressions involving parts of these graph feature struc-
tures;

� general predicative constraints among functional expressions involving parts of these graph
feature structures; the predicates being either built-in constraints, or are de�ned in terms of one
another and built-in constraints using Horn clauses (i.e., �a la Prolog).

Thus,LIFE �nds solutions �tting functionally constrained order-sorted featured graph structures.
In fact,LIFE doesnot, strictly speaking,actively solvethese constraints—at least not in the classical
sense of constraint-solving seen as the active search for a complete set of solutions. Rather,LIFE 's
residuation enables constraints to be used as passive demons acting as coroutined�lters [7]. Indeed,
this is deliberate and a key to its ef�ciency, since for declarative graphics, actual constraint-solving
is rarely needed. This is because if one speci�es,e.g., a graphical interface panel containing several
widgets such as buttons, text �elds, drop-down menus,etc., one has a speci�c unique feasible solution
in mind (e.g., by drawing it with pencil and paper). Active constraint-solving would try to guess
values �t to accommodate positioning constraints speci�edfor widgets making up a display panel. By
contrast,LIFE uses a powerful constraint-postponement mechanism using aclever implementation
technique whereby constraints act as incremental �lters [11]. Hence, provided the GUI design is
sound,LIFE simply uses basic information such as font size and relativespacing and alignment.
Then, as soon as the needed information becomes available (either by default or explicit choice),

15See:http://wikix.ilog.fr/wiki/bin/view/Main/HassanAitKa ci#3
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every piece of the speci�ed graphical set of objects eventually falls into place. As it turns out, this
is all one needs for specifying constrained graphics fully declaratively—and this is indeed what the
LIFE graphical toolkit does [2].

Fig. 2 shows the GUI display generated from theLIFE speci�cation. In Appendix Section A.2,
we give the complete actual code for the main predicate generating this GUI panel so that the reader
may have an idea of the ease with which such sophisticated interactive controls can be speci�ed in
LIFE .

Figure 2:Su Dokugame panel generated byLIFE

Fig. 3 displays an easySu Dokugame to be solved. For the reader who wants to try solving this
puzzle, we have postponed showing the solution found by ourLIFE Su Dokusolver in the display
of Fig. 10 on Page 27 (also shown is the solving time).
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Figure 3: A de�nedSu Dokugame display

7 Conclusion
In life, the earlier one fails, the earlier one eventually
succeeds!

ALTA ÏR EL-GHOUL

We have presented a purely declarative (yet duly executable) speci�cation of the popular game puz-
zle Su Doku in the form of a disconcertingly simple (yet surprisingly effective—indeed, ef�cient!)
LIFE program. The well-known key for solving this puzzle being the (in)famousàlldiff ' global
constraint and this constraint not being built intoLIFE , the contribution of interest is thus how
LIFE is yet capable of realizing it ef�ciently thanks to its original data structure (the -term) and
control strategy (residuation). The former are extensiblerecord structures and the latter is an auto-
matic suspension/resumption scheme allowing suspended constraints to act as powerful search-tree
pruners. We have also illustrated howLIFE 's constraint system is amenable to specifying effective
GUIs purely declaratively by specifying one for ourLIFE Su Dokusolver. The exercise is presented
as an interesting, indeed entertaining, Programming Pearlillustrating the originality ofLIFE as well
as its adequacy for ef�cient declarative programming. One may retrieve thisSu Dokusolver and its
GUI,16 as well as theWildLife 1.02 system itself.17

16See:http://wikix.ilog.fr/wiki/pub/Main/HassanAitKaci/li fe_sudoku.tar.gz
17See:http://wikix.ilog.fr/wiki/bin/view/Main/HassanAitKa ci#3
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Appendix

A The LIFE code

A.1 The Su Doku solver

The �le “ sudoku.lf ” contains only the pureSu Dokusolver inLIFE . One can use this solver
at the top level ofWildLife 1.02 . One can also interact with the solver using a constraint-driven
LIFE /X Window graphical interface: one must then import module “x_sudoku ” de�ned in �le
“x_sudoku.lf ” and then submit the query `play_sudoku? '.

module("sudoku"), public(sudoku,sudoku_solver)?
import("alldiff")?

A Su Dokugame consists in enforcing the constraints making up the game's rules:

sudoku(@(@(X11,X12,X13,X14,X15,X16,X17,X18,X19),
@(X21,X22,X23,X24,X25,X26,X27,X28,X29),
@(X31,X32,X33,X34,X35,X36,X37,X38,X39),
@(X41,X42,X43,X44,X45,X46,X47,X48,X49),
@(X51,X52,X53,X54,X55,X56,X57,X58,X59),
@(X61,X62,X63,X64,X65,X66,X67,X68,X69),
@(X71,X72,X73,X74,X75,X76,X77,X78,X79),
@(X81,X82,X83,X84,X85,X86,X87,X88,X89),
@(X91,X92,X93,X94,X95,X96,X97,X98,X99))) :-

% The rows constraints:
alldiff(X11,X12,X13,X14,X15,X16,X17,X18,X19),
alldiff(X21,X22,X23,X24,X25,X26,X27,X28,X29),
alldiff(X31,X32,X33,X34,X35,X36,X37,X38,X39),
alldiff(X41,X42,X43,X44,X45,X46,X47,X48,X49),
alldiff(X51,X52,X53,X54,X55,X56,X57,X58,X59),
alldiff(X61,X62,X63,X64,X65,X66,X67,X68,X69),
alldiff(X71,X72,X73,X74,X75,X76,X77,X78,X79),
alldiff(X81,X82,X83,X84,X85,X86,X87,X88,X89),
alldiff(X91,X92,X93,X94,X95,X96,X97,X98,X99),
% The columns constraints:
alldiff(X11,X21,X31,X41,X51,X61,X71,X81,X91),
alldiff(X12,X22,X32,X42,X52,X62,X72,X82,X92),
alldiff(X13,X23,X33,X43,X53,X63,X73,X83,X93),
alldiff(X14,X24,X34,X44,X54,X64,X74,X84,X94),
alldiff(X15,X25,X35,X45,X55,X65,X75,X85,X95),
alldiff(X16,X26,X36,X46,X56,X66,X76,X86,X96),
alldiff(X17,X27,X37,X47,X57,X67,X77,X87,X97),
alldiff(X18,X28,X38,X48,X58,X68,X78,X88,X98),
alldiff(X19,X29,X39,X49,X59,X69,X79,X89,X99),
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% The square constraints:
alldiff(X11,X12,X13,X21,X22,X23,X31,X32,X33),
alldiff(X14,X15,X16,X24,X25,X26,X34,X35,X36),
alldiff(X17,X18,X19,X27,X28,X29,X37,X38,X39),
alldiff(X41,X42,X43,X51,X52,X53,X61,X62,X63),
alldiff(X44,X45,X46,X54,X55,X56,X64,X65,X66),
alldiff(X47,X48,X49,X57,X58,X59,X67,X68,X69),
alldiff(X71,X72,X73,X81,X82,X83,X91,X92,X93),
alldiff(X74,X75,X76,X84,X85,X86,X94,X95,X96),
alldiff(X77,X78,X79,X87,X88,X89,X97,X98,X99).

The predicate `labels ' speci�es that theSu Dokucells may only be1::9 digits:

labels(@(@(X11,X12,X13,X14,X15,X16,X17,X18,X19),
@(X21,X22,X23,X24,X25,X26,X27,X28,X29),
@(X31,X32,X33,X34,X35,X36,X37,X38,X39),
@(X41,X42,X43,X44,X45,X46,X47,X48,X49),
@(X51,X52,X53,X54,X55,X56,X57,X58,X59),
@(X61,X62,X63,X64,X65,X66,X67,X68,X69),
@(X71,X72,X73,X74,X75,X76,X77,X78,X79),
@(X81,X82,X83,X84,X85,X86,X87,X88,X89),
@(X91,X92,X93,X94,X95,X96,X97,X98,X99))) :-

% Specify the cell labels:
X11=label, X12=label, X13=label, X14=label, X15=label,
X16=label, X17=label, X18=label, X19=label, X21=label,
X22=label, X23=label, X24=label, X25=label, X26=label,
X27=label, X28=label, X29=label, X31=label, X32=label,
X33=label, X34=label, X35=label, X36=label, X37=label,
X38=label, X39=label, X41=label, X42=label, X43=label,
X44=label, X45=label, X46=label, X47=label, X48=label,
X49=label, X51=label, X52=label, X53=label, X54=label,
X55=label, X56=label, X57=label, X58=label, X59=label,
X61=label, X62=label, X63=label, X64=label, X65=label,
X66=label, X67=label, X68=label, X69=label, X71=label,
X72=label, X73=label, X74=label, X75=label, X76=label,
X77=label, X78=label, X79=label, X81=label, X82=label,
X83=label, X84=label, X85=label, X86=label, X87=label,
X88=label, X89=label, X91=label, X92=label, X93=label,
X94=label, X95=label, X96=label, X97=label, X98=label,
X99=label.

The nullary function l̀abel ' returns a different digit in1::9 following the natural ordering (from
1 up to9) each time it is backtracked over.

label -> { 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }.

TheSu Dokusolver itself is de�ned as the predicate `sudoku_solver '. It simply constrains the
Su Dokugrid and speci�es the cell labels:

sudoku_solver(G) :- sudoku(G), labels(G).
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A.2 The Su Doku GUI
Row, row, row, your boat
Gently down the stream
Merrily, merrily, merrily
Life is but a dream. . .

ANNE O'NYMOUS

Here is is a purely declarative—although duly executable!—LIFE speci�cation for a simple
graphical interface to playSu Dokugames. The main predicate to invoke is `play_sudoku ': it
speci�es and creates the control panel display for theSu Dokugraphical interface. Since it is a pred-
icate controlling an interactive GUI panel that must be closed on exit, it consists of a disjunction
whose �rst term builds and activates the GUI panel, and whosesecond term closes the panel and exits
the interaction.

We only show the code for `play sudoku '. This code uses help functions using and returning
constructs ofLIFE 's X Window toolkit, a modular library written inLIFE itself based on a rawX
Window interface toC functions. Calls to theX Window Clibrary functions are simply passed on to
theX Window system or residuate according to whether or not they contain suf�ciently instantiated
terms as input parameters.

LIFE 's X Window toolkit contains abstract predicates and functionsthat allow for easy relative
positioning of graphical objects. The toolkit uses TEX's “box-and-glue” model [9, 2]. It consists of
high-level functions and predicates, all written inLIFE on top of the rawX Window primitives,
meant to ease graphical object construction. Their names have a mnemonic structure corresponding
to the nature of the constructed objects and/or the constraints imposed thereon. For example, some
such functions and constructs used in the code below are:

� `p button ' constructs and returns apush-button widget;
� `on off button ' constructs and returns anon/off-button widget;
� `menu button ' constructs and returns amenu-button widget;
� `menu panel ' constructs and returns amenu panel;
� `menu list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to

construct and return amenu-list widget;
� `h box ' constructs and returns ahorizontal boxof given width (in pixels);
� `v box ' constructs and returns avertical boxof given height (in pixels);
� `ht list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to con-

struct and return a box containing thehorizontal top-aligned sequence of boxesfrom the list;
� `hc list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to con-

struct and return a box containing thehorizontal centered sequence of boxesfrom the list;
� `vc list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to con-

struct and return a box containing thevertical centered sequence of boxesfrom the list;
� `vr list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to con-

struct and return a box containing thevertical right-aligned sequence of boxesfrom the list;
� `vl list ' (pre�x operator) uses its argument (a list of graphical frames or widgets) to con-

struct and return a box containing thevertical left-alignedsequence of boxes from the list;
� `same size ' imposes that all the elements of the given list bewidgets of equal size(i.e.,

height and width);
� `containing ' (in�x operator) function returning its �rst argument (a graphical frame or

widget) after including the second argument (a graphical frame or widget) in the �rst one;
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� `create boxes ' takes a lists of graphical objects and creates them.

play_sudoku :-
(

% Save choice point for exit on QUIT:

ExitPoint = get_choice,

% A glitzy title box:

Title = fancy_text_box(text => "SUDOKU MASTER",
font => title_font,
colors => [red,ivory,green,blue,yellow]),

% The display is a list of boxes making up the Su Doku grid cells :

Display = [ C11:cell(1,1) , C12:cell(1,2) , C13:cell(1,3)
, C14:cell(1,4) , C15:cell(1,5) , C16:cell(1,6)
, C17:cell(1,7) , C18:cell(1,8) , C19:cell(1,9)
, C21:cell(2,1) , C22:cell(2,2) , C23:cell(2,3)
, C24:cell(2,4) , C25:cell(2,5) , C26:cell(2,6)
, C27:cell(2,7) , C28:cell(2,8) , C29:cell(2,9)
, C31:cell(3,1) , C32:cell(3,2) , C33:cell(3,3)
, C34:cell(3,4) , C35:cell(3,5) , C36:cell(3,6)
, C37:cell(3,7) , C38:cell(3,8) , C39:cell(3,9)
, C41:cell(4,1) , C42:cell(4,2) , C43:cell(4,3)
, C44:cell(4,4) , C45:cell(4,5) , C46:cell(4,6)
, C47:cell(4,7) , C48:cell(4,8) , C49:cell(4,9)
, C51:cell(5,1) , C52:cell(5,2) , C53:cell(5,3)
, C54:cell(5,4) , C55:cell(5,5) , C56:cell(5,6)
, C57:cell(5,7) , C58:cell(5,8) , C59:cell(5,9)
, C61:cell(6,1) , C62:cell(6,2) , C63:cell(6,3)
, C64:cell(6,4) , C65:cell(6,5) , C66:cell(6,6)
, C67:cell(6,7) , C68:cell(6,8) , C69:cell(6,9)
, C71:cell(7,1) , C72:cell(7,2) , C73:cell(7,3)
, C74:cell(7,4) , C75:cell(7,5) , C76:cell(7,6)
, C77:cell(7,7) , C78:cell(7,8) , C79:cell(7,9)
, C81:cell(8,1) , C82:cell(8,2) , C83:cell(8,3)
, C84:cell(8,4) , C85:cell(8,5) , C86:cell(8,6)
, C87:cell(8,7) , C88:cell(8,8) , C89:cell(8,9)
, C91:cell(9,1) , C92:cell(9,2) , C93:cell(9,3)
, C94:cell(9,4) , C95:cell(9,5) , C96:cell(9,6)
, C97:cell(9,7) , C98:cell(9,8) , C99:cell(9,9)
],

% The Su Doku grid's rows:

Row1 = ht_list[ C11,C12,C13 , h_box(5) , C14,C15,C16 , h_box (5) , C17,C18,C19 ],
Row2 = ht_list[ C21,C22,C23 , h_box(5) , C24,C25,C26 , h_box (5) , C27,C28,C29 ],
Row3 = ht_list[ C31,C32,C33 , h_box(5) , C34,C35,C36 , h_box (5) , C37,C38,C39 ],
Row4 = ht_list[ C41,C42,C43 , h_box(5) , C44,C45,C46 , h_box (5) , C47,C48,C49 ],
Row5 = ht_list[ C51,C52,C53 , h_box(5) , C54,C55,C56 , h_box (5) , C57,C58,C59 ],
Row6 = ht_list[ C61,C62,C63 , h_box(5) , C64,C65,C66 , h_box (5) , C67,C68,C69 ],
Row7 = ht_list[ C71,C72,C73 , h_box(5) , C74,C75,C76 , h_box (5) , C77,C78,C79 ],
Row8 = ht_list[ C81,C82,C83 , h_box(5) , C84,C85,C86 , h_box (5) , C87,C88,C89 ],
Row9 = ht_list[ C91,C92,C93 , h_box(5) , C94,C95,C96 , h_box (5) , C97,C98,C99 ],
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% The Su Doku grid:

Grid = frame_box(vl_list [ Row1, Row2, Row3
, v_box(5)
, Row4, Row5, Row6
, v_box(5)
, Row7, Row8, Row9
],

padding => 10),

% The control buttons:

Load = p_button(text => "LOAD",
action => load_games(Display)),

Save = p_button(text => "SAVE",
action => save_all_games),

Solve = p_button(text => "SOLVE",
action => solve(Display)),

More = p_button(text => "MORE",
action => more(Display)),

Random = p_button(text => "RANDOM",
action => random_seeds(Display)),

Stop = p_button(text => "STOP",
action => stop),

Refresh = p_button(text => "REFRESH",
action => (refresh(Display),

reset_state(Refresh,false))),
Flush = p_button(text => "FLUSH",

action => clear_all(Display)),
Quit = p_button(text => "QUIT",

action => (set_choice(ExitPoint),fail)),

% Imposing a same_size constraint on the control buttons:

same_size([Games,Load,Random,Save,Solve,More,Stop,R efresh,Flush,Quit]),

% A toggle button to switch to random labelling mode
% (negative offset means it's right-aligned):

Toggle = on_off_button(text => "Toggle random labelling",
font_id => button_font,
offset => -10,
action => toggle_random_labelling),

% The defined game menu:

Menu = menu_panel containing menu_list defined_games(Dis play),
Games = menu_button(text => "Defined games",

font_id => z_font,
text_color_id => blue,
menu => Menu),
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% We now define info boxes to display containing the
% game's name, status, time, etc., ...

% Binding CurrentFrame to a framed edit box (the current
% game name's edit box, which gets then bound to Current)
% captioned "Current game:", where the name of the current
% game is to be entered and displayed:

CurrentFrame = current_frame("Current game:",Current,D isplay),
reset_text(Current,"Empty game"),

% Binding DefineFrame to a framed edit box (which gets then
% bound to Define) captioned "Define game as:", where a name
% redefining the current game is to be entered and displayed:

DefineFrame = define_frame("Define game as:",Define,Dis play),

% Binding StatusFrame to a framed info box (which gets then
% bound to Status) captioned "Status:" where solving status
% will be displayed:

StatusFrame = info("Status:",Status),

% Binding TimeFrame to a framed info box (which gets then
% bound to Time) captioned "Total Time:", where the total
% solving time will be displayed:

TimeFrame = info("Total time:",Time),

% Binding CountFrame to a framed info box (which gets
% bound to Count) captioned "Number of Solutions:",
% where the total number of solutions found so far will be
% displayed:

CountFrame = info("Solutions found:",Count),
reset_text(Count, "0"),

% Attaching some of the widgets to Display as extra features:

Display = @(current => Current, games => Games,
define => Define, status => Status,
time => Time, count => Count,
more => More, random => Random,
solve => Solve, stop => Stop),
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% Putting together the main display panel:

Panel = panel(title => "Sudoku challenge!...")
containing
padded_box(vc_list [ Title

, v_box(30)
, hc_list [ vr_list [ Games , v_box(50)

, Load , v_box(5)
, Random , v_box(5)
, Save , v_box(5)
, Solve , v_box(5)
, More , v_box(5)
, Stop , v_box(5)
, Refresh , v_box(5)
, Flush , v_box(5)
, Quit , v_box(50)
, Toggle
]

, h_box(50)
, Grid
, h_box(30)
, vl_list [ CurrentFrame , v_box(10)

, DefineFrame , v_box(10)
, StatusFrame , v_box(10)
, TimeFrame , v_box(10)
, CountFrame
]

]
],

padding => 20),

% Finally, we create the Panel and Menu boxes and that's it:

create_boxes([Panel,Menu])

;

% This is the main backtrack point for graceful exit upon QUIT :

write("Exiting Su Doku challenge ...\n"),
succeed

).
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B SomeSu Doku challenges

Figures 4 to 9 contain some puzzles for theSu Doku-challenged reader's entertainment. They are
given in order, ranging from easy (Fig. 4), to dif�cult (Figs. 5, 6), to nasty (Figs. 7, 8), to out-of-
worldly diabolical (Fig. 9). These were collected from various Internet sites.

Figure 4: See solution displayed in Fig. 11.
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Figure 5: See solution displayed in Fig. 12.
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Figure 6: See solution displayed in Fig. 13.
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Figure 7: See solution displayed in Fig. 14.
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Figure 8: See solution displayed in Fig. 15.
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Figure 9: See solution displayed in Fig. 16.
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C Solutions to theSu Doku challenges

Figures 10 to 16 contain the solutions to the seven puzzles proposed in this article in Figures 3 to 9.
They are given here for theSu Doku-lazy reader's curiosity, as well as to illustrateLIFE 's actual
reaction to each puzzle. Note the solving times shown at the bottom right of the displays along each
grid's solution, con�rming the puzzles's estimated dif�culty.

Figure 10: Solution display for the game in Fig. 3.
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Figure 11: Solution display for the game in Fig. 4.
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Figure 12: Solution display for the game in Fig. 5.
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Figure 13: Solution display for the game in Fig. 6.
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HASSAN A ÏT-KACI A SIMPLE LIFE Su Doku SOLVER

Figure 14: Solution display for the game in Fig. 7.
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Figure 15: Solution display for the game in Fig. 8.
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Figure 16: Solution display for the game in Fig. 9.
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